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Introduction 

The quantum chemistry literature contains references 
to a plethora of basis sets, currently numbering almost 
100. While professional quantum chemists might be
come familiar with several dozen of these in a lifetime 
of calculations, the occasional user of ab initio programs 
probably wishes to ignore all but the two or three sets 
which, through habitual use, have become personal fa
vorites. Unfortunately, this attitude has its drawbacks. 
Intelligent reading of the literature requires at least a 
cursory knowledge of the limitations of other basis sets. 
Information concerning the likely accuracy of a specific 
basis for a particular property is essential in order to 
judge the adequacy of the computational method and, 
hence, the soundness of the results. Occasionally, for 
reasons of economy or computational feasibility, a basis 
set is selected for which the computed results are nearly 
without significance. 

In light of the large number of publications reporting 
new basis sets or detailing the performance of existing 
sets the task of remaining informed has become very 
difficult for experts and nonexperts alike. The existence 
of such a vast multitude of basis sets is attributable, at 
least in part, to the difficulty of finding a single set of 
functions which is flexible enough to produce "good" 
results over a wide range of molecular geometries and 
is still small enough to leave the problem computa
tionally tractible and economically within reason. 

The driving force behind much of the research effort 
in small basis sets is the fact that the computer time 
required for some parts of an ab initio calculation is 
very strongly dependent on the number of basis func
tions. For example, the integral evaluation goes as the 
fourth power of the number of Gaussian primitives. 
Fortunately this is the only step which explicitly de
pends on the number of primitives. All subsequent 
steps depend on the number of contracted functions 
formed from the primitives. The concept of primitive 
and contracted functions will be discussed later. 

Consider a collection of K identical atoms, each with 
n doubly occupied orbitals and Af unoccupied (or vir
tual) orbitals. The SCF step increases as (n + N)4K4, 
while the full transformation of the integrals over the 
original basis functions to integrals over molecular or
bitals goes as (n + N)5K5. Methods to account for 
correlation effects vary greatly. Only a few of the 
popular ones will be considered here. Second order 
Moller-Plesset (MP2) perturbation theory goes as 
Ti2N2K4 but still requires an nN4K5 integral transfor
mation. MP3 goes as Ti2N4K6, while a Hartree-Fock 
singles and doubles CI will have Ti2N2K4 configurations, 
(Ti2N2K4)2 hamiltonian matrix elements of which Ti2N4K6 

will be nonzero. Pople and co-workers1 have proposed 
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replacing the full (n + N)5K5 integral transformation 
with a H2N4K6 partial transformation every CI iteration. 
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For certain ranges of n, N, and K this may represent 
an improvement. The MP3 step by itself only requires 
one iteration. 

As is evident from the above discussion, even a small 
reduction in the size of the basis set can result in an 
enormous overall speedup. Since the amount of com
puter time in question can often be measured in days 
there is great interest in finding smaller basis sets that 
produce results equivalent to much larger ones. 

Since the choice of basis set must be guided by con
siderations of desired accuracy in the results and com
putational costs, it becomes imperative that sufficient 
information be available so that an intelligent choice 
is possible. Some of the new basis sets appearing in the 
literature are used for a single project and then disap
pear into oblivion. Others are proposed, without ex
tensive calibration, as serious contenders to replace 
basis sets in common use. 

In practice, most popular computer programs for ab 
initio calculations contain internally defined basis sets 
from which the user must select an appropriate one. In 
principle this should facilitate switching from one set 
to another as it becomes warranted by the course of the 
investigation. For example, preliminary determinations 
of all relevant equilibrium and transition state geome
tries on a given potential energy surface may be made 
with a small basis set. Subsequent refinement at a 
chosen subset of these points can then be made with 
a larger set. 

In general the evolution of "black box"-type quantum 
chemistry programs (such as Gaussian-82 by Pople and 
co-workers), coupled with the increasing performance 
of computer hardware, has resulted in a tremendously 
expanded role for ab initio techniques in academic and 
commercial applications. It may be possible in the 
future to have programs make an informed decision 
about the choice of basis set based on the results of 
thousands of previous calculations which are accessible 
in a data base, but that time has not yet come. The 
responsibility still rests with the program user. 

In this article we will seek to review basis sets of the 
type known as "contracted Cartesian Gaussians" from 
the point of view of the nonspecialist who is interested 
in a practical guide to what is generally available today 
and what are some of the pitfalls to avoid. Other recent 
reviews on this subject from slightly different points of 
view have been written by Huzinaga2 and Wilson.3 

Boys4 first advocated the use of Gaussian-type basis 
functions on the practical ground that all of the inte
grals required for a molecular calculation could be easily 
and efficiently evaluated. Because a Gaussian has the 
wrong behavior both near the nucleus and far from the 
nucleus, it was clear that many more Gaussians would 
be required to describe an atomic orbital than if Sla
ter-type orbital (STO) basis functions were used. On 
the other hand, integrals involving STO's, at best, were 
expensive and, at worst, were intractible for molecules. 

Fortunately, the ratio of the number of Gaussians to 
the number of STO's required to obtain comparable 
accuracy is not as large as originally believed. Although 
4 Gaussians are needed to get within 1 mH (1 mH = 
6.27 kcal/mol) of the exact energy for the hydrogen 
atom, for atoms further down the periodic table, such 
as argon, the ratio is more like 2.6:1. Furthermore, when 
"polarization" functions, e.g., d functions on carbon, are 

considered the ratio is reduced even more. A detailed 
comparison of the relative performance of STO and 
Gaussian d functions using a wide range of position and 
momentum space properties found that a single STO 
was worth no more than two Gaussians in the copper 
atom.5 In a comparisions of STO and Gaussian basis 
sets in molecular property calculations Carsky and 
Urban6 and Rosenberg and Shavitt7 find similar values 
with similar size basis sets. 

To some extent the disadvantage associated with the 
larger number of Gaussians compared to STO's was 
ameliorated through the work of Clementi8 and Whit-
ten9 who introduced the concept of "contracted" 
Gaussians as approximations to atomic orbitals. In this 
scheme, the basis functions for molecules became, not 
individual Gaussians, but rather fixed linear combina
tions. Early work dealt with Gaussian lobe functions 
in which, for example, a p orbital was approximated by 
differences of s orbitals slightly displaced from each 
other. For higher angular momentum, the number of 
terms required, and the loss of accuracy from differ
encing in computing the integrals, made the method 
unwieldy. 

Clementi and Davis10 extended the use of 
"contracted" functions to include Cartesian Gaussians. 
Although individual integrals with Cartesian Gaussians 
are somewhat more complicated than with Gaussian 
lobes, the ease in extending the basis set to higher an
gular momentum has made this procedure the method 
of choice. Contrary to the misapprehensions about the 
use of Gaussians as basis functions, fewer contracted 
Gaussians than uncontracted Slater-type orbitals are 
required, in fact, for a given level of accuracy. One of 
the first widely distributed program packages to permit 
contracted Gaussians was IBMOL. The 1966 user's 
guide11 to version 2 boasts the impressive ability to 
handle 700 Gaussians of s, p, d, or f symmetry on an 
IBM 7094 with 35,000 32-bit words of memory. 

Definitions 

Slater-type orbitals are defined in spherical polar 
coordinates as 

Xnlm = NT"-1 exp(-flr)Y,m(M) 

where I and m are angular momentum quantum num
bers, N is a normalization constant and f is the orbital 
exponent. The main claims to superiority of these or
bitals are their short- and long-range behavior. Actu
ally, of course, a linear combination of such functions 
will behave correctly only if the smallest orbital expo
nent is exactly (2Z)1/2, where J is the ionization potential 
in atomic units. Thus, variationally determined orbitals 
will have an exponential tail with the wrong decay rate. 
Also, the cusp at the nucleus will only be correct for 
particular linear combinations of Slater orbitals. 

Cartesian Slater orbitals could be defined as 

Xkmn = Nxkymzn exp(-M 

Ordinary Slater orbitals can be written as simple linear 
combinations of these using the definition of spherical 
polynomials. 
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Cartesian Gaussian orbitals are defined as 
Xkmn = Nxkymzn exp(-fr2) 

Again, linear combinations of these can be used to form 
spherical polynomials of definite angular momentum 
and this is done in some programs. In common par
lance, the whole set of Cartesian Gaussians for a fixed 
L = k + m + n is referred to as s, p, d, etc., even though 
they generally contain components of lower angular 
momentum. The six functions with L equal 2, for ex
ample, are called "d" functions even though one linear 
combination of them is really an "s" function. 

Unlike Slater orbitals, no finite linear combination 
of Gaussians can have the correct exponential tail. 
Similarly, no finite combination can have a cusp at the 
nucleus. In general, long range overlap between atoms 
will always be underestimated with Gaussians, as will 
the charge and spin density at the nucleus. While 
Slater orbitals may be wrong at these limits, the error 
is not so systematic. 

Atomic orbitals are widely referred to by chemists, 
but are actually only loosely defined. Hydrogenic or
bitals are too different from the optimum orbitals for 
describing an atom to furnish a suitable definition. 
Slater originally introduced STO's as approximations 
to atomic orbitals when the parameters n and f where 
chosen by certain empirical rules. Consequently, STO's 
are still frequently confused with atomic orbitals. In 
this paper we will use the term "atomic orbital" to refer 
to a Hartree-Fock orbital resulting from a converged 
(i.e., basis set limit Roothaan-Hartree-Fock or nu
merical SCF) calculation on some state of the atom with 
spin (singlet, doublet,...), symmetry (S, P,...) and 
equivalence restrictions (e.g., px = py = pz). Unfortu
nately, this definition is still somewhat state dependent 
as the 2p Hartree-Fock orbital for the carbon s2p2 3P 
ground state is not identical to the 2p Hartree-Fock 
orbital for the sxp3 configuration average. 

Rydberg orbitals for atoms (i.e., orbitals outside of 
the valence shell) can be defined by "improved virtual 
orbital" (IVO)12 calculations on the ground state, or by 
SCF calculations on the excited state. In the latter case 
the Rydberg orbital would not quite be orthogonal to 
the valence orbitals from a ground-state calculation. 
Valence p orbitals for atoms such as beryllium which 
have no occupied p orbitals in the ground state can be 
defined by calculations on an excited state in which that 
orbital is occupied. Valence d orbitals for elements 
Al-Ar can be defined similarly. 

Partially occupied d shells of transition metals pro
vide an especially difficult problem. Even though S ^ + 1 

and s2dn states have d orbitals with overlaps greater 
than 0.9, this small change in the orbital results in 
several eV change in energy. Thus, a single d orbital 
for such metals cannot usefully be defined. 

Description of electron correlation in atoms is most 
efficiently handled by use of natural orbitals. These 
orbitals are the size of the occupied orbitals but have 
additional nodes. Such orbitals do not occur as the 
occupied orbitals in any excited state, so they are 
outside of ordinary chemical experience. 

A somewhat confusing nomenclature pervades the 
basis set literature. What are termed "first-row" basis 
sets are actually intended for use on second-period el
ements, Li-Ne. "Second row" sets cover third-period 
elements and so on. In order not to introduce any 

additional confusion in this paper we shall continue to 
use this convention. 

The Basic Primitive Functions 

Individual Gaussian orbitals are commonly referred 
to as "primitive" orbitals. The first task in obtaining 
contracted orbitals is to choose a good set of primitives. 
It is generally assumed by chemists that molecules can 
be viewed as a collection of slightly distorted atoms. 
That is, the energy required to completely ionize a 
molecule is only slightly different from the energy re
quired to completely ionize the constituent atoms, and 
the molecular charge density only differs a little from 
the sum of the atomic densities. Hence it is natural to 
require that the primitive basis set provide an accurate 
description of the atoms. 

The first molecular calculations used a minimum set 
of STO's with exponents chosen by Slater's rules. 
Later, exponents were chosen to minimize the SCF 
energy of the atom. At far greater cost, the orbital 
exponents could also be optimized for the molecule at 
each point on the potential surface. Unfortunately, no 
calculation at this level yielded quantitative results 
because such a small set of Slater functions is inade
quate to describe the isolated atom. Also, describing 
the change in size of an atom in a molecule by reop-
timization of the basis functions at each geometry is 
prohibitively expensive. 

Most Gaussian primitive sets are constructed by op
timization of the Hartree-Fock energy of the atom. 
This choice will place heavy emphasis on representing 
the core orbitals, as these orbitals contribute most of 
the total energy of an atom. For use in a molecular 
calculation, this set may be supplemented with addi
tional diffuse primitives and with functions of higher 
angular momentum. As these functions are designed 
to describe distortion of atoms in molecules, they cannot 
be optimized in atomic calculations. 

The number of primitives used has a critical effect 
on the cost of certain parts of a molecular calculation. 
For gradient searches for optimum structures, the cost 
can be dominated by the time to do the basic integrals; 
and, hence, small primitive sets are essential. Calcu
lations of the spectrum and other properties by per
turbation theory or configuration interaction depend 
on the number of contracted basis functions, but are 
relatively independent of the number of primitive 
functions. Hence, in this step there is a strong moti
vation for using larger numbers of primitives to produce 
better contracted basis functions. Pople and co-work
ers, for example, routinely do the geometry search with 
a smaller basis set and then calculate the energy, at the 
selected geometries, with a more elaborate basis. 

Calculation of other properties, such as the field 
gradient at the nucleus, is very sensitive to basis func
tions which have almost no effect on the energy. Be
cause blanket inclusion of enough functions to describe 
all properties well is very expensive, special purpose 
functions need only be used when that particular 
property is desired. 

As noted above, many basis sets are designed to op
timize the SCF energy of the atom, and are then sup
plemented and/or modified for use in molecular SCF 
calculations. This would seem to ignore the correlation 
energy problem. Fortunately, the basis functions 
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needed to describe correlation energy are localized in 
the same region of space as those needed for the SCF 
energy. Hence the same primitive set can serve almost 
equally well for the SCF and correlating orbitals. 

The first optimized Gaussian set for atomic SCF en
ergies was published by Huzinaga.13 His most elaborate 
set had 10s and 6p basis functions and covered atomic 
numbers 1 to 10. The SCF error increases with atomic 
number and is 6 mH for neon. His (9s,5p) basis pro
duces an error for neon of 20 mH. This basis was used 
by Dunning to construct his "double zeta" (DZ) basis 
which had an error only 2 mH larger than the error with 
the uncontracted primitives. The term "double zeta" 
derives from the early common use of the Greek letter 
f to represent the exponent of an STO basis function. 
A single zeta (SZ) basis was a basis in which each atomic 
orbital was represented by a single STO. For example 
carbon would have five functions ( l s ^ s ^ p ^ p ^ p , ) . 
Similarly a DZ basis had two STO's per atomic orbital. 
The nomenclature carried over into work with Gaus-
sians, where in general usage a DZ basis means any 
basis set with two contracted functions per atomic or
bital. 

Van Duijneveldt extended Huzingaga's work through 
(14s,9p) basis sets. This set gave an error of only 0.2 
mH for neon. No systematic contractions of the van 
Duijneveldt basis have been published, but Davidson14'15 

has built contractions using it for carbon and oxygen. 
The effort required to develop accurate basis sets can 

be quite large if each component is individually optim
ized. For example, to produce an energy-minimized 
(14s,9p) set requires searching in a 23-dimensional 
space. The problems associated with local minima and 
slow convergence are such that no individually optim
ized exponent sets larger than van Duijneveldt's have 
been produced. 

Inspection of the optimal exponents reveals that the 
ratio between successive exponents in the valence region 
is nearly constant. Hence, it was suggested by Rue
denberg16,17 that an "even-tempered" or geometric se
quence of exponents would represent a good approxi
mation to the independently optimized set. If the ex
ponents are written as £ = a/31, with different a and /3 
values for s,p,d,... symmetry functions, the number of 
parameters to be optimized is greatly reduced. For 
example, all exponents in an (s,p) basis set on carbon 
can be specified in terms of only 4 parameters (as, /S8, 
ap, and /3P) regardless of the number of primitives. The 
first suggestion of a geometric sequence for exponents 
came in work on the beryllium atom by Reeves.18 

Furthermore, the optimized a(N) and /3(2V) can be 
parameterized as functions of N, the number of prim
itive functions, allowing extrapolation to very large basis 
sets without the need for reoptimization.19,20 This ap
proach gives a (14s,9p) SCF energy for neon of 
-128.5464, 0.7 mH above the Hartree-Fock limit and 
0.5 mH above the independently optimized set. The 
ease of generating arbitrarily large even-tempered sets 
has meant that some of the lowest energy SCF and CI 
wavefunctions for molecules such as H2O, H2CO, H2S, 
NH3, and HCl have been produced with this method.21 

Bardo and Ruedenberg22 also experimented with the 
additional constraint that the exponents of the p-type 
Gaussians remain equal to some of the s exponents in 
a fashion similar to the basis sets of Pople. 

Davidson and Feller 
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Figure 1. The distribution of s-symmetry gaussian exponents 
in three energy-optimized (14s,9p) neon atom basis sets. 

Huzinaga and co-workers23 have recently devised a 
four-parameter function of the form: 

fc = ap+ll + y(k/K)>], k = 1,2 K 

for generating Gaussian exponents. They call their 
basis "well-tempered" after the parent even-tempered 
formula. Since the exponents are shared over s,p,d,f... 
Gaussians the number of independent parameters does 
not increase as higher angular momentum functions are 
included. Optimizing a, /3, y, and 5 produced a (14s,9p) 
SCF energy for the neon atom of -128.5467, 0.4 mH 
above the Hartree-Fock limit and only 0.1 mH above 
the independently optimized set. In Figure 1 the re
lationship between independently optimized, even-
tempered, and well-tempered exponents, ft, is shown for 
the s-symmetry functions in neon. The original paper 
reported (14s,9p) sets for the first-row elements and 
(16s,lip) sets for the second row. Subsequent papers 
dealt with the elements K through Xe24 and special 
considerations of the first- and second-row transition 
metals.25 SCF excitation energies for various s2d""2, 
sM"-1 and dn states were within 0.04 eV (first-row 
transition elements) and 0.01 eV (second-row transition 
elements) of the numerical Hartree-Fock values. 

Silver, Nieuwpoort, and Wilson26'27 have carried this 
logic one step further and argued that universal, even-
tempered basis sets can be devised which apply equally 
well to all atoms. Of course, this requires very large 
basis sets if a large range of atomic charges are to be 
covered with equal accuracy. 

An interesting point in this regard is the question of 
completeness. It is desirable for high accuracy studies 
to be able to define a sequence of basis functions for 
which the limit of the sequence is a complete set. It was 
noted that the even-tempered primitive set for a fixed 
value of /3 when extended to an infinite set is incom
plete. For example, if the optimized hydrogen (4s) set, 
which yields an energy of -0.4987 H, is extended with 
both larger and smaller exponents (using the same /3) 
the energy converges to -0.4995 H rather than -0.5. 
However, it can be shown28 that when /3 is varied with 
N, as in the formula of Schmidt and Ruedenberg, the 
infinite set is complete. Actually, the basis set will 
become over-complete (i.e. linearly dependent) in this 
limit. For practical purposes /3 must not be too close 
to unity or the calculation becomes numerically unst
able due to near linear dependency. 

Clementi and Corongiu29 combined the ideas of 
even-tempered exponents and universal basis sets along 
with six constraints to produce a new type of basis set, 
which they called "geometrical", for use in large mole-
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cule calculations. AU atoms from H to Sr are repre
sented by the same set of exponents (although differing 
numbers of s, p, and d functions appear). Three sets 
were reported, all with /3 = 3.0 and values of a in the 
0.012-0.016 range. Examples of variation in the com
position of the three sets for selected elements are: 
6s-10s on hydrogen, (9s,5p)-(13s,8p) on carbon and 
(15s,8p,5d)-(19s,llp,8d) on iron. Errors in the atomic 
energies range from 0.0002 hartree for the 6s hydrogen 
basis to 0.0005 hartree for the (13s,8p) carbon basis to 
0.0555 hartree for the (20s,13p,8d) Sr basis. 

Another approach to selection of the primitive basis 
is the STO-nG basis. This was formed by a least-
squares fit of primitive Gaussians to a minimum set of 
Slater type orbitals. The orbital exponents for the 
Slater orbitals were then chosen as the average best 
exponents from molecular calculations. Such basis 
functions produce rather poor atomic energies. 

The last approach which will be mentioned here is 
the simultaneous optimization of the exponents and 
contraction coefficients based on atomic SCF energies. 
Whitten's original Gaussian lobe scheme, for example, 
optimized a (10s,5p) primitive set for a contraction to 
3s and Ip basis functions. Pople's various basis sets of 
the n-ijG type (e.g., 6-31G) are of this type with the 
added constraint of shared orbital exponents between 
primitives on the same atomic shell. For example, the 
i'th exponent carbon 2s exponent would be identical 
with the i'th 2p exponent. Some of these basis sets are 
commonly used as optimized, while others are normally 
rescaled for use in molecules. No basis of this type is 
reported for neon, but the SCF error for fluorine is 48 
mH with the 6-31G basis. 

The Choice of Additional Primitive Functions 

For accurate molecular calculations all of these atomic 
basis sets require supplementation. The most obvious 
defect is that atomic calculations only define functions 
with the same L as the occupied orbitals, e.g., s and p 
for carbon. Polarization functions, which describe the 
distortion of the atomic orbitals in a molecular envi
ronment, are often determined by choosing an average 
value from a group of energy-optimized functions com
puted for a small, representative set of molecules. The 
energy loss in choosing an average value, as opposed to 
explicitly optimizing for each new molecule, is small due 
to the generally observed insensitivity of the energy to 
the polarization function exponent. 

When sufficiently many polarization functions are 
employed exponents optimized for atomic correlation 
purposes will essentially span the same space as those 
needed for polarization and the correlation set can serve 
dual purposes. In the case of carbon, for example, the 
energy-optimized exponent for a single d-type Gaussian 
to be used for angular correlation purposes in the atom 
has a value of roughly 0.6 compared to average values 
in the 0.7-0.8 range taken from molecular SCF opti
mizations where the function is used for polarization 
purposes. Similar results for other first-row atoms 
suggest that the energy-optimal exponents for polari
zation purposes are sufficiently close to the optimal 
correlation exponents that the atom-determined expo
nents may be transferred to the molecular case with no 
significant loss in accuracy. In a study of electron af
finities and first-ionization potentials Feller and 

Davidson30 have reported exponents for multiple d, f, 
and g sets on carbon, nitrogen, and oxygen determined 
at the singles and doubles CI level. 

From a practical point of view the convergence of the 
total energy and many other properties is quite slow. 
An extensive study by Ahlrichs and co-workers31 of the 
impact of higher polarization functions on F2 showed 
that the relative importance of various types (d,f,g...) 
of polarization functions varies with the computational 
method chosen. While SCF and multiconfiguration 
SCF (MCSCF) methods were energy converged at the 
(2d,lf) level, multireference singles and doubles CI (MR 
SD-CI) required up through g functions. The largest 
calculation, a 280,000 configuration MR SD-CI using 
an (s,p,d,f) basis, obtained De = 1.59 eV (expt = 1.66 
eV) and Re = 1.420 A (expt = 1.412 A). Another study32 

on Cl2 found even slower convergence with respect to 
higher L functions for this second row diatomic than 
for F2. A single g set contributes 0.15 eV to the disso
ciation energy. Similar studies of the effects of higher 
polarization functions on the one-electron properties of 
oxygen and sulfur hydrides33 have been performed. In 
general, higher angular momentum functions are found 
to be much more important for correlation purposes 
than for polarization effects. The addition of such 
functions to one atom in a molecule usually necessitates 
their addition to all atoms, for the sake of balance. 
Thus, the decision to include polarization functions can 
greatly increase the size of the basis. 

Lists of polarization exponents have been given by 
many authors. One of the most extensive, due to Roos 
and Siegbahn,34 lists values for the entire first and 
second rows. Recommended exponents for multiple 
d-type polarization functions and the relative merits of 
f-type functions in second-row atoms have recently been 
discussed by Magnusson and Schaefer.35 Roos and 
Sadlej36 have proposed a method for determining po
larization function exponents, called electric-field var
iant Gaussians, which are claimed to provide a more 
balanced treatment of molecular properties other than 
the total energy. Early results on LiH are nearly 
identical with properties obtained from numerical HF 
calculations. However, no list of exponents for other 
atoms was given. 

A somewhat less popular method for introducing 
polarization effects into molecular wave functions is to 
add lower angular momentum functions at the bond 
centers.37 For first-row diatomics the introduction of 
a single (s,p) set at the center of the bond provides 90% 
of the energy lowering obtained with a single set of d 
functions at the nuclear centers. Many authors38,39'40,41 

have suggested exponents for these functions and have 
advocated their use in SCF and correlated wave func
tion calculations. 

If a wide range of the molecular potential energy 
surface is of concern the positioning of the bond func
tions can be a problem. Bauschlicher42 has warned of 
another problem associated with bond functions. In an 
effort to understand why bond functions seemed to 
perform better than atom-centered polarization func
tions at predicting diatomic dissociation energies he 
studied the ClO molecule with both types of basis sets. 
The bond-centered sets were found to have CI super
position errors as large as 0.7 eV, compared to standard 
polarized set errors of 0.09 eV. That is, the difference 
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in computing the atomic energy with just the atom-
centered functions as opposed to the atom-centered plus 
bond functions was 0.7 eV. Thus, a large part of the 
computed molecular dissociation energy was due to the 
lowering of the atomic energy from the nearby addi
tional functions. 

Wright and co-workers43'44 have argued in favor of 
exploiting the superposition error by balancing it 
against the basis set incompleteness error in an em
pirical manner so as to allow the calculation of disso
ciation energies in molecules which are too large to be 
handled otherwise. However, when correlated wave 
functions are being used, as in SCF + CI calculations, 
Bauschlicher45 cautions that this balance is very difficult 
to maintain as the geometry and correlation recovery 
method are varied. 

Less obvious than the lack of polarization functions 
in an atomic basis set is the fact that the valence shell 
of energy-optimized basis sets is usually relatively in
flexible as most of the basis functions are used in getting 
the core energy correct. To correct this deficiency it 
is often desirable to add a more diffuse basis function 
to all optimized sets. 

The Choice of Contraction Coefficients 

As in the case of primitive functions, the contraction 
schemes represent a compromise between accuracy and 
feasibility. Without loss in accuracy, all basis functions 
which appear in the same ratio in all molecular orbitals 
of importance can be grouped into a fixed contraction. 
If the core electrons are not to be correlated in the final 
wave function, and if no core hole states are being 
considered, then it is usually safe to contract the core 
orbitals. Tight basis functions for the core also appear 
in the valence orbitals because of orthogonality, but 
experience has shown that they have the same coeffi
cient ratios in the valence orbital as they have in the 
core orbitals. The cost per integral increases rapidly 
with the number of terms in the contraction, so for 
integral-limited computing steps such as SCF gradient 
geometry searches there is a strong motivation to use 
rather crude approximations to the core orbitals. On 
the other hand, large CI studies of vertical excitation 
energies are limited by the number of basis functions, 
rather than the number of primitives, so it is better to 
use an accurate description of the core. 

Almost all contractions are based on atomic Har-
tree-Fock calculations. Occasionally, contracted po
larization functions are formed from calculations on 
molecules, but these do not transfer accurately to other 
molecules. Contractions may be segmented, that is the 
primitives are partitioned into disjoint or almost disjoint 
sets. Alternatively, Raffenetti46 has proposed "general" 
contractions in which every primitive may appear in 
every contraction. 

In Raffenetti's scheme the suggested minimal basis 
set would consist of nothing more than the atomic SCF 
orbitals for each atom in the molecule. These would 
be supplemented by making the more diffuse primitives 
uncontracted. Feller and Ruedenberg have shown for 
a variety of molecules that the SCF AO's overlapped 
the space of the "optimal"47'48 minimal basis set to 
better than 0.99. 

For example, a carbon [4s,2p] contraction suitable for 
molecular calculations would consist of the Is, 2s, and 

2p atomic orbitals from an uncontracted, isolated-atom 
calculation done with energy optimal exponents, plus 
the two most diffuse s-type and single most diffuse 
p-type primitives. Slight complications can arise in 
uncontracting the "most diffuse" primitives if the 
even-tempered set has been extended at the diffuse end 
for the purpose of improving certain properties. In that 
case it would be advisable to keep the extra diffuse 
Gaussian primitives uncontracted along with the diffuse 
primitive or primitives from the energy-optimized set 
even though the computational cost has been increased. 

Without loss in energy the uncontracted primitives 
could be dropped from the Is, 2s, and 2p orbitals, thus 
reducing somewhat the cost of the general contraction 
for the remainder of the Is and 2s functions. In fact, 
for most small to medium size energy-optimized basis 
sets one can span almost the same function space by 
simply uncontracting the three most diffuse s-type 
primitives because all but about three of the primitives 
are being used to describe the core orbital. In general, 
the closer the basis set is to being a minimal basis the 
greater is the advantage to a general contraction ap
proach in terms of the ease of generating the contraction 
coefficients for any atom. Whereas, as one proceeds to 
more extended basis sets with long inner shell expan
sions and many uncontracted Gaussians, the less it 
offers and the more its computational expense increases. 
The general contraction scheme is also quite expensive 
to use in geometry searches, but it may offer advantages 
in terms of interpreting the wave function. The use of 
generally contracted basis functions has increased 
slowly because many integral programs do not handle 
such functions efficiently.49 

Two approaches have been suggested for calibrating 
basis sets. The first, exemplified in the work of Pople 
and co-workers, uses the same level of theory for many 
molecules and assumes that the average error is rep
resentative of the actual error for similar molecules. 
Pople has extensively tested certain contractions so, for 
these contractions, some idea of the average error to be 
expected in certain applications is available. Unfortu
nately, Pople has focused on a rather narrow set of 
properties, such as geometry and heats of isodesmic 
reactions, and his earlier small basis sets may not do 
well for other properties such as the dipole moment. 
Also, his earlier work compared only SCF results with 
experiment. Often the error in the geometry seemed 
to increase as the basis set was improved toward the 
SCF limit. 

The other approach is to generate a sequence of basis 
sets which rapidly approach an effectively complete set 
for the property of interest, and then to do a sequence 
of calculations with these sets, extrapolating to the limit 
of a complete set. A prerequisite for effective extrap
olation is the smooth behavior of the property as a 
function of the basis set size. Figure 2 demonstrates 
that not every sequence of basis sets produces accept
able results. The dipole moment of carbon monoxide 
was computed at the SCF level with a variety of un
contracted even-tempered basis sets to which a single 
diffuse s and p function had been added. The same 
property was computed with the STO-3G, n-HG and 
rc-illG (s,p) basis sets. It is evident that the two se
quences are approaching the same limit, but in the 
small basis set region the results can be erratic. Since 
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Figure 2. Variation in the SCF dipole moment of carbon mon
oxide as a function of the number of gaussian primitives for various 
basis sets. 

the experimental CO dipole moment is -0.112 D (C-O+), 
the ST0-3G basis value might be considered "best". 
Comparison of small basis set SCF results with exper
iment can often lead to this mistaken conclusion. 

Because no finite basis set can be complete in all 
regions of space, it is necessary to select the sequence 
carefully for the property being considered. Of course, 
the basis set must be good enough that refinement of 
the basis in one region does not produce distortions in 
the overall charge distribution. In the context of ab 
initio calculations on heteronuclear diatomics Mullik-
en50 warned of the need for "balanced" basis sets. Al
though it is straightforward to insure a balanced set 
when all atoms in a molecule are from the same row of 
the periodic table, when atoms from two or three dif
ferent rows are involved and the basis set is small, the 
task increases in complexity. 

The question of how to measure the overall quality 
of a basis set is a difficult one. Wilson51 has recently 
proposed the use of the orbital amplitude difference 
function as a means of probing basis set deficiencies. 
For two orbitals, one expanded in M basis functions, 
the other in N basis functions, the difference function 
is given simply as the difference of the two orbitals, 
$M(r) - <l>N(r). Maroulis et al.52 have made use of in
formation theoretical techniques in an attempt to 
classify and improve basis set performance with regard 
to properties other than just the energy. Their study 
included the total energy, the bond length, and four 
electric moment tensors in some simple diatomics and 
water.53 Averaging over several vibrational and rota
tional states was considered for the electric moments. 

The magnitude of the reduced gradient of the energy 
with respect to the gaussian exponents, 

\g\ = y/VGi/n, where G1 = dE/d In £, n = 
no. of exponents, 

has been suggested as a measure of basis set quality by 
Kari, Mezey, and Csizmadia.54 For any basis set this 

norm will go to zero provided the exponents have been 
perfectly optimized. Some properties, such as charge 
density at the nucleus, appear to be fairly sensitive to 
the degree of convergence in the exponents. Based on 
this idea four groups of "uniformly balanced" basis sets, 
from (4s,2p) up to (10s,5p), were prepared for the 
first-row atoms.55 However, while \g\ permits basis sets 
of equal composition to be compared, it is inherently 
incapable of being used to judge sets of different size 
in order to determine a practical measure of their con
vergence to the complete basis set limit. Perhaps a 
better measure set quality would be the maximum ei
genvalue of the second derivative matrix, (d2E/d In £<9 
In i";)|opt which provides a feel for how sensitive the 
energy is to the given choice of exponents. 

Nonetheless, the great diversity of bonding situations 
which may arise for arbitrary molecular geometries 
coupled with the ever-expanding set of experimentally 
accessible properties makes it very difficult to predict 
in advance the level of accuracy in an ab initio calcu
lation. In the absence of a generally agreed upon 
measure of the "quality" of a basis set researchers must 
still rely on their ability to test a proposed basis set on 
a prototypical molecular system for which the property 
in question is already known. 

The Basis Set Superposition Error 

If the property to be computed is the dissociation 
energy, then particular care must be paid to the "basis 
set superposition error" (BSSE). The severity of this 
problem is proportional to the incompleteness of the 
atomic basis set. Thus, to the extent the atom-centered 
basis is inadequate, the SCF or CI procedure will at
tempt to utilize any available basis functions on 
neighboring centers to make up for the deficiency. On 
the other hand, many molecular properties do not ap
pear to be particularly sensitive to the BSSE.56 

In the simple case of a diatomic an artificial lowering 
of the two atomic energies in the vicinity of the equi
librium geometry will masquerade itself as true binding 
energy and skew the calculated well depth. The BSSE 
will be especially severe when moderately diffuse basis 
functions are included in the valence set and crude 
approximations for the core orbitals have been used. 

No completely reliable scheme for either eliminating 
or estimating superposition errors has been given. 
Perhaps the most popular prescription for partially 
resolving the problem is the counterpoise method of 
Boys and Bernardi.57 This procedure corrects the at
omic energies by computing the atoms in the full mo
lecular basis set. As pointed out by several authors58,59 

this will overestimate the BSSE because it will provide 
the atom with basis functions that are "used up" by the 
other atoms in the molecule. 

Due to the shallowness of the potential curves (often 
on the order of 1 kcal/mol or less) studies of van der 
Waals complexes are particularly subject to this prob
lem. The fact that correlated wave functions are nec
essary to find any bonding at all merely compounds the 
problem. An illustration of the inherent difficulties 
caused by the BSSE in van der Waal's complexes is 
provided in a recent paper on Mg2

60 which is experi
mentally known to have a well depth of 1.229 ± 0.003 
kcal/mol and an Re = 3.89 A. Basis sets as large as 
(14s,llp,4d,2f) contracted to [9s,5p,2d,lf] were used in 
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conjunction with various kinds of many body pertur
bation theory (MBPT) up to fourth order. Even at this 
level the authors conclude that the accuracy of the re
sults "depends considerably on the magnitude of the 
basis set superposition error." 

An SCF study61'62 of the interaction energy of HF + 
HF with 34 different basis sets, ranging from minimal 
to very extended, explored the effectiveness of the full 
counterpoise correction and a limited approach in which 
only the polarization functions on neighboring centers 
was used to augment the atomic basis. The authors 
concluded that the counterpoise-corrected interaction 
energy was no more reliably accurate than the uncor
rected energy. They furthermore conclude that other 
schemes for estimating the BSSE which include only 
the unoccupied orbitals from neighboring centers do not 
in general yield accurate corrections. At the correlated 
level on a much simpler system (He + He) Gutowski 
et al.63 find that the full counterpoise method produced 
better results than methods which try to omit the oc
cupied orbitals from neighboring atoms. 

Basis Sets Used with Effective Core Potentials 

The tremendous cost of ab initio calculations has 
motivated many attempts to find computational 
shortcuts. One such approach is based on the obser
vation that core orbitals are relatively inert to changes 
in chemical bonding (the so called "frozen core 
approximation"). Another observation is that the effect 
of core electrons on the valence electrons can be treated 
through the use of a potential energy term expressed 
as the sum of local functions multiplied by projection 
operators. Based on these two assumptions effective 
core potentials (ECP's) or pseudopotentials, as they are 
sometimes called, reduce the computational problem 
to dealing with valence electrons only. Thus, for ex
ample, germanium becomes as easy to treat as carbon. 

Most early results obtained from ECP's compared 
favorably with results obtained from all-electron cal
culations, although there was a tendency to find shorter 
bond lengths and somewhat deeper potential energy 
curves. Recently developed ECP's64 have reportedly 
solved these problems so that ECP and all-electron 
results are now in nearly exact agreement. 

In principle it should be possible to use the valence 
portion of an ordinary all-electron basis set with an 
ECP, but the results are somewhat uneven. Most au
thors derive special valence basis sets by least-squares 
fitting of nodeless pseudo-orbitals that match the usual 
atomic valence orbitals for all values of r greater than 
some chosen critical value. This raises the question of 
whether extended basis sets can be used with ECP's. 

ECP's and companion basis sets featuring shared s 
and p exponents for first- and second-row atoms have 
been given by Stevens et al.65 and by Topiol et al.66 

Nonrelativistic ECP's for the transition metals Sc to Zn 
and relativistic ECP's for Y to Hg67 and main group 
elements Na to Bi68 have been constructed by Hay and 
Wadt who point out that even for first row transition 
metals the relativistic correction to the 4s23dn_1 -* 
4S1Sd" excitation energy can be as large as 0.4 eV. For 
third-row transition elements the correction increases 
to 3.2 eV. In order to account for the dominant rela
tivistic effects they incorporated the mass-velocity and 
one-electron Darwin corrections into their potentials. 

In some circumstances the division of electrons into 
"core" and "valence" sets is not so clear cut. For ex
ample, while the 3s and 3p orbitals are usually treated 
as part of the core for first-row transition metals, they 
are roughly the same size as the 3d valence orbitals and 
in some cases may need to be treated along with the 
valence space. In order to accommodate such situations 
Hay and Wadt69 have developed ECP's which do not 
include the outermost core orbitals of their previous 
potentials. 

Aside from not having to contend with the core 
electrons the valence basis set requirements for ECP 
and all-electron calculations are the same. An inter
esting example of the carry over from all-electron work 
to work with ECP's appears in an article70 on SeO2 and 
TeO2 done with the Hay and Wadt potentials. The 
importance of d-type polarization functions had been 
demonstrated almost 16 years ago for SO2,

71 the third-
period analogue of these dioxides. For SeO2 and TeO2 
the presence of d-polarization functions was found to 
be critical to achieving bound systems. 

Other collections of ECP's have been published by 
Bachelet et al.72 including almost the entire periodic 
table, and Rappe et al.73 for elements Mg to Cl. 

Selected Contracted Basis Sets for All-Electron 
Calculations 

In this section we shall briefly describe a few of the 
basis sets enjoying current widespread use. For those 
interested in experimenting with basis sets on their own, 
the best single source compilation of Gaussian expo
nents and contraction coefficients is probably the recent 
book by Poirier, Kari, and Csizmadia.74 

ST0-3G. Perhaps the most widely used basis set of 
all time is the ST0-3G minimal basis developed by 
Pople and co-workers. Originally formulated for first-
row elements75 it was later extended to second-row,76 

third-row,77 and fourth-row78 main group elements. It 
has also been applied to first- and second-row transition 
metals.79 The main attraction of this basis, other than 
its small size, is its effectiveness in predicting geome
tries. Pople80 reports that the mean absolute deviation 
from experiment for SCF bond lengths in several dozen 
molecules containing H, C, N, O, and F is 0.030 A. 
Moreover, the literature contains hundreds of other 
comparisons with experiment, most of which fall in a 
similar range. 

Such agreement may appear remarkable for a mini
mal basis, until it is realized that the large STO-3G 
basis set superposition error helps cancel other defects 
to produce reasonable bond lengths. For example, when 
the SCF bond length of CO is determined with a basis 
set of accurate Hartree-Fock (ls,2s,2p) atomic orbitals 
the result is 0.11 A longer than experiment, while the 
STO-3G determined SCF value falls within 0.02 A. In 
the case of F2 very large, polarized basis sets find an 
SCF bond length of 2.50 A (expt = 2.68 A) and an 
energy of atomization of-1.37 eV (expt = +1.68 eV), 
while the STO-3G basis gives 2.49 A and +0.20 eV. 
That is, due to fortuitous cancellation of error, the re
sults are better than the Hartree-Fock model is capable 
of yielding. In general, the smaller the basis the more 
ab initio calculations assume an empirical flavor. 

As might be expected when agreement with experi
ment relies heavily on cancellation of error the agree-
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ment will be much worse in some cases. Transition 
metal bonds are such a case, with deviations of 0.2 A 
or larger being.reported. 

Energetics are not predicted with the same accuracy 
as geometric parameters. The restriction to a single 
factor for both a and ir p functions results in T bonds 
which are too weak relative to a bonds. For example, 
the reaction C2H6 + C2H6 — 2(CH4) + C2H4 has an 
equal number of CH bonds in the reactants and prod
ucts but two C-C single bonds on the left and one C=C 
double bond on the right. The STO-3G basis overes
timates the SCF AE for this reaction by 33 Kcal/mol 
compared with large, polarized basis sets. 

4-21G and 3-21G. These "split valence" basis sets 
were a compromise between the speed obtainable using 
the STO-3G basis and the accuracy of larger, slower 
sets. The 4-21G basis81 was designed for efficient use 
in geometry optimizations which utilize analytical gra
dients. The 3-21G basis sets have been constructed for 
first-82 and second-row83 elements of the periodic table. 
Performance characteristics for the 4-21G and 3-21G 
sets are very similar. The reported mean absolute de
viation from experimental bond lengths is 0.016 A for 
first-row compounds and 0.071 A for second-row com
pounds with the 3-21G basis. Skewing of a bond en
ergies is significantly reduced compared with the 
STO-3G basis, so that the SCF AE for the isodesmic 
reaction described above is in essentially exact agree
ment with the result from larger basis sets. 

Two further extensions of the 3-21G basis have been 
published. The first is a set of polarization functions 
for the second-row elements to make the 3-21G(*) ba
sis.84 Compared with the original set the mean absolute 
deviation in bond lengths dropped from 0.071 A to 0.027 
A. The 3-21+G and 3-21++G basis sets85 add diffuse 
functions to improve the description of anion geome
tries. 

4-31G, 5-31G, and 6-31G. By increasing the number 
of primitives devoted to the core and first valence 
function, the 4-31G,86 5-31G, and 6-31G87 bases improve 
upon 3-21G energetics at the expense of increased 
computer times. Adding all six components of a 
cartesian d function for first-row atoms gives the 6-31G* 
basis. Further addition of p functions to hydrogen 
results in the 6-31G** basis. Hehre and Latham88 ex
tended the 4-31G basis to second-row elements. This 
set is sometimes referred to as the 44-31G basis. 
Likewise, the 6-31G* basis is available for the first and 
second rows.89 A slightly smaller set, called the 6-31+G 
set by Radom and co-workers90 replaces the six-com
ponent cartesian d's with their five-component spherical 
counterparts. Agreement with experiment for the 6-
31G* bond lengths using 33 sample closed-shell mole
cules was 0.033 A at the Hartree-Fock level and 0.018 
A at the MP2 level of theory.91 This set of molecules 
included some notoriously difficult cases where agree
ment was much worse than normal. If these are ig
nored, the mean absolute deviation falls to 0.013 A at 
the HF level. 

Augmenting the 4-31G basis with a set of diffuse s 
and p functions, to give a 4-31+G set, has been sug
gested for improving the description of anion proton 
affinities.92 A comparison of calculated and experi
mental proton affinities for more than a dozen anions 
shows improvements of 10-40 kcal/mol compared to 

the 4-31G basis. However, this set does not provide 
improved anion geometries. 

6-31IG**. All previously described Pople basis sets 
have been optimized at the Hartree-Fock level. These 
sets are somewhat deficient for use in post HF calcu
lations, so a 6-311G** basis93 (single zeta core, triple zeta 
valence, and polarization functions on all atoms) was 
developed which performs better at the MP2 level. 
Geometrical parameters obtained with this basis at this 
level were found to agree almost exactly with geometries 
obtained with an uncontracted (8s,4p,ld/4s,lp) basis. 
Agreement with experiment at the MP4 level was in the 
0.006-0.013 A range, and using SD-CI wave functions94 

were generally better than 0.007 A. 
More Extended Pople Basis Sets. If accuracy be

yond that obtainable with the 6-311G** basis is desired, 
more flexibility must be introduced into the polarization 
space. The set must also be supplemented with diffuse 
functions for description of anions. With these goals 
in mind Pople and co-workers95 have developed several 
basis sets, the largest of which goes by the unwieldy 
name of 6-311++G(3df,3pd). The "++" indicates that 
there are additional diffuse functions on all atoms. The 
"3df" means that three 5-component d functions and 
one 7-component f function are included on all first-row 
atoms. Exponents for the f functions were optimized 
at the UMP4 level of theory. The "3pd" means three 
p functions and one d function on hydrogen. UMP4 
A£'s for several simple reactions improved, with respect 
to the 6-31G** results, by as much as 14 kcal/mol with 
inclusion of all the extra functions. 

Dunning Double Zeta with Polarization. One of 
the earliest high-quality collections of contracted basis 
functions was due to Dunning.96 When coupled with 
the suggested d polarization functions, this [4s,2p] 
segmented contraction of the Huzinaga (9s,5p) expo
nents for first-row atoms provides ample flexibility to 
describe most bonding situations at a semiquantitative 
level. 

Dunning/Hay Split Valence and Double Zeta. 
By decreasing the flexibility of the core description in 
the DZ basis sets Dunning and Hay97 fashioned a 
[3s,2p] or "split-valence" contraction which has been 
widely used. No systematic examination of the errors 
for this set has been collected, but errors in geometric 
parameters and properties would be expected to be 
comparable to those found with the 6-31G basis. The 
SV basis sets covered elements H-Ne. The same paper 
also contained [6s,4p] double zeta contractions of the 
Huzinaga (lls,7p) primitives for elements Al-Cl. 

MINI-i, MIDI-i and MAXI-i. Tatewaki and 
Huzinaga have published a large collection of minimal 
and split valence basis sets for first-row atoms which 
do not restrict the 2s and 2p exponents to be equivalent. 
The contraction coefficients were determined via the 
SCF procedure. The MINI-i (i = 1-4) have varying 
numbers of Gaussians in the Is, 2s, and 2p contracted 
functions. For example, MINI-I could be denoted 
(3s,3s/3p), while MINI-4 is a (4s,3s/4p) contraction. By 
splitting the valence space functions you obtain the 
MIDI-i sets, where, for example, MIDI-I is a 
[3s,2s,ls/2p,lp] contraction. 

The common demominator of the MINI and MIDI 
contractions is the use of 3 Gaussians to represent the 
2s space. In the MAXI-i sets 4 Gaussians are used along 
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with up to 7 Gaussians for the Is and 2p functions. 
These may be split in a variety of ways to yield basis 
sets such as [7s,2s,ls,ls/4p,lp,lp,lp] which can be used 
in conjunction with polarization functions to yield high 
accuracy results. No extensive calibration has been 
done for these basis sets. 

McLean/Chandler Second-Row Sets. McLean 
and Chandler98 have developed minimal, double, and 
triple zeta (for the 3p, double zeta for the rest) con
tracted basis sets for neutral Na-Ar and the P -, S", and 
Cl" anions. Huzinaga's (12s,8p) and (12s,9p) exponent 
sets served as a starting point. Although the authors 
advocate the use of general contractions as being 
"clearly superior", these contractions are of the seg
mented kind (minimal duplication of the primitives in 
the contracted functions) because "the bulk of current 
molecular computation is still being done using integral 
generators which limit the number of primitives in a 
contracted basis function". 

Transition-Metal Basis Sets. Until quite recently 
the number of high-quality basis sets for the transition 
metals, Sc-Zn, was very limited, as contrasted to the 
abundance of sets for the first and second row elements. 
This disparity can be traced to unique problems con
nected with the transition metals as well as the simple 
increase in computational effort required to deal with 
much larger sets of primitives. A relatively large 
(15s,8p,5d) set has been reported by Basch et al." 
Wachters100 (14s,9p,5d) set for third-row elements up 
to Zn was developed as an extension of earlier first- and 
second-row basis sets. With similar contraction lengths 
the Wachters set produces much lower energies than 
the set by Basch et al. For example the [8s,4p,2d] Mn 
(6S) SCF energy with the Wachters set is -1149.7872 
compared to -1149.5642 with the latter. Both the 
Wachters' set and a smaller (12s,6p,4d) set, developed 
by Roos et al.,101 have been augmented by Hay102 to 
increase the flexibility in the d space. Hay has shown 
that the 3d orbitals of the 4S2Sd*-2, 4S1Sd"-1 and 3d" 
electronic configurations vary enough that use of basis 
sets optimized for one can lead to errors of several eV 
in computed excitation energies relative to the Har-
tree-Fock limit. This behavior has no counterpart for 
first row atoms, since the 2s and 2p orbitals for 2s22pn 

and 2S^p""1"1 configurations are very similar to each 
other. 

Just as d functions are known to be important for 
first and second row elements, f-type polarization 
functions have been shown to be critical for describing 
bonding between transition elements. McLean and 
Liu103 found that such functions contribute over 1 eV 
to the binding energy of Cr2. On the other hand, to the 
extent that the bonding is more 4s in nature the ad
dition of f functions should hardly affect the binding 
energy. Walsh and Bauschlicher104 evaluated the per
formance of various f contractions for Cr2 and the Cu 
atom at the SCF and CI levels. While a single f function 
did well at the SCF level, when correlation is included, 
a two-term contraction was found to provide much 
better results. 

Supplemental functions for Huzinaga's105 second-row 
transition element basis sets have been given by Walch 
et al.106 Three areas of weakness in the original sets 
were indicated (1) the 5s -» 5p near degeracy necessi
tated additional 5p functions; (2) a balanced description 

of the 5s24d", 5s14dn+1, 4dn+2 states require diffuse 4d 
functions; and (3) a set of 4f functions is needed to 
correlate the 4d orbitals. The Huzinaga sets ranged in 
size from (14s,9p,5d) to (17s,llp,7d). 

Miscellaneous First-Row Sets. As an alternative 
to the STO-3G minimal set, whose exponents and 
contraction coefficients were determined by least-
squares fitting, Ditchfield et al.107 published a collection 
of minimal basis sets for first-row elements whose pa
rameters were chosen so as to minimize the total energy. 
The contraction coefficients were determined by non
linear minimization. One set imposed the restriction 
that the 2s exponents equalled the 2p exponents. Ta-
vouktsoglou and Huzinaga108 have developed a closely 
related set in which the contraction coefficients were 
chosen by the SCF procedure. A somewhat refined 
version of this method was used to generate basis sets 
for the transition metals Sc-Zn.109 

Miscellaneous Second-Row Sets. Veillard110 has 
published energy optimized (12s,6p) and (12s,9p) sets 
for Na-Ar. Orbital expansion coefficients are given 
along with the atomic energies resulting from various 
ways of contracting the primitives. Care should be 
exercised in using the Na and Mg sets, since they lack 
sufficient diffuse p functions for most molecular work. 
This is a general phenomenon caused by the lack of an 
occupied 3p orbital in the atomic ground state. 

Roos and Siegbahn111 have published a small (10s,6p) 
energy optimized collection of basis sets for second-row 
elements. This same article contained (7s,3p) sets for 
first-row elements. 

Miscellaneous Third-Row Sets. Recently, Tate-
waki and Huzinaga112 reported two new minimal basis 
sets, called STD-SET(I) and DZC-SET(I), for the 
first-row transition elements which yield atomic orbital 
energies as good as, or better than, DZ basis sets. In 
a subsequent paper113 they discuss ways to split the 
valence space so as to increase the basis sets' flexibility. 

Miscellaneous Fourth-Row Sets. Stromberg et 
al.114 have published (15s,llp,6d) exponent sets for the 
fourth-row main group elements, In-Xe. Atomic orbital 
coefficients are listed so that it is possible to construct 
DZ contractions. 

An Illustrative Example 

A selected subset of the basis sets described above 
were chosen for use in calculating the properties of 
formaldehyde so that some direct comparison among 
basis sets could be made. Recognizing that no single 
molecule or set of properties can illustrate all of the 
strengths or weaknesses of any basis, a compilation of 
the results from various basis sets for a well-behaved, 
ground-state singlet molecule was still felt to be in
formative. 

All formaldehyde calculations were performed at the 
experimental geometry of Oka and Takagi115,116

 (JRC0 = 
1.20785 A, i?CH = 1-H60 A, HCH angle = 116.52°). 

The large basis set limit was approximated by a 
(19s,10p,2d,lf) primitive set contracted to [10s,5p,2d,lf] 
on oxygen and carbon using energy-optimized even-
tempered (18s,9p) sets extended by one additional s and 
p function at the diffuse end. The hydrogen basis was 
a (10s,2p,ld) contracted to [4s,2p,ld]. Contraction 
coefficients were taken from the Is and 2p atomic or
bitals on the respective atoms, s-symmetry components 
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TABLE I. Selected Energy-related Properties" 

basis* 
Dunning/ Hay 
SV 
Dunning/ Hay 
SVP 
Dunning DZP 

ST0-3G 

3-21G 

6-31G 

6-31G** 

MIDI-4 

HFAO 
minimal 
Atomic NO 
SVP 
(s,p,d,f) 
extended 
Experimental 

total 
energy 

-113.8292 
-114.0542 
-113.8939 
-114.2255 
-113.8940 
-114.2253 
-112.3537 
-122.4988 
-113.2204 
-113.4573 
-113.8069 
-114.0408 
-113.8680 
-114.2031 
-113.6848 
-113.9177 
-113.6604 
-113.7873 
-113.9034 
-114.2454 
-113.9202 
-114.3317 
-114.562* 

energy of 
atomization 

0.349 
0.481 
0.413 
0.555 
0.413 
0.554 
0.418 
0.543 
0.400 
0.498 
0.355 
0.478 
0.415 
0.570 
0.349 
0.484 
0.163 
0.273 
0.404 
0.533 
0.420 
0.569 
0.60 

Che imical Rev lews, 198( 

of Formaldehyde (1A1) at the Experimental Geometry 

BSSEC 

0.0010 

0.0011 

0.0011 

0.0533 

0.0114 

0.0024 

0.0024 

0.0018 

0.0002 

0.0002 

0.0002 

orbital 
energies 

((Ib1) 
-0.538 

-0.534 

-0.534 

-0.447 

-0.527 

-0.534 

-0.531 

-0.534 

-0.596 

-0.534 

-0.537 

*(2b2) 

-0.443 

-0.440 

-0.440 

-0.352 

-0.430 

-0.440 

-0.436 

-0.441 

-0.498 

-0.441 

-0.443 

vertical 
ionization 

2B1 

0.465 
0.532 
0.458 
0.526 
0.457 
0.525 
0.404 
0.460 
0.462 
0.526 
0.464 
0.527 
0.456 
0.523 
0.463 
0.527 
0.550 
0.596 
0.460 
0.524 
0.457 
0.532 
0.53 

2B2 

0.355 
0.381 
0.354 
0.405 
0.354 
0.383 
0.275 
0.288 
0.349 
0.374 
0.353 
0.378 
0.352 
0.381 
0.354 
0.375 
0.428 
0.438 
0.357 
0.384 
0.356 
0.397 
0.40 

3, Vol. 86, 

verticle 
excitations 

3A2 

0.089 
0.131 
0.103 
0.133 
0.103 
0.133 
0.078 
0.138 
0.092 
0.138 
0.090 
0.131 
0.103 
0.135 
0.091 
0.143 
0.072 
0.119 
0.104 
0.129 
0.102 
0.139 
0.12 

1A2 

0.103 
0.150 
0.116 
0.150 
0.116 
0.149 
0.097 
0.153 
0.108 
0.152 
0.104 
0.144 
0.117 
0.159 
0.105 
0.144 
0.092 
0.136 
0.118 
0.156 
0.115 
0.153 
0.15 
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3A1 

0.156 
0.223 
0.167 
0.224 
0.167 
0.224 
0.155 
0.229 
0.162 
0.229 
0.157 
0.222 
0.167 
0.250 
0.159 
0.222 
0.155 
0.219 
0.169 
0.220 
0.167 
0.233 
0.22 

" Energies are expressed in hartrees. For each basis set entry SCF values are given in the first row, followed by the frozen core CI values 
in the second row. The calculations were performed at the following geometry: C (0.0, 0.0, -1.141998), O (0.0, 0.0, 1.140502), H (0.0, 
±1.793554, -2.251522), with coordinates given in bohrs. 6The total number of functions associated with each basis is as follows: 

Dunning/Hay SV (22) 
Dunning/Hay SVP (40) 
Dunning DZP (42) 

STO-3G (12) 
3-21G (22) 
6-31G (22) 

6-31G** (40) 
MIDI-4 (22) 
HF AO's (12) 

atomic NO's ETG (40) 
Extended ETG (120) 

The s components of the cartesian d functions were deleted in the extended ETG basis. c Defined as the difference of the spin- and 
symmetry-restricted atomic SCF energies computed in the atomic basis and the symmetry-unrestricted SCF energies in the full molecular 
basis. The electronic configurations for carbon and oxygen corresponded to ls22s22py

12p2
1 and ls22s22p,22py

12p2
1, respectively (C2„ symmetry 

imposed), with the x direction pointing out of the molecular plane and z pointing along the molecular 2-fold rotation axis. ''Includes 
relativistic effects. 

of the cartesian d's were not included but p-symmetry 
components of the cartesian f s were kept. This basis 
contained 120 contracted functions and is referred to 
as the "extended ETG" basis in the tables. 

The tables also contain two other nonstandard basis 
sets for comparison. One is a minimal, atomic orbital 
basis formed from the Hartree-Fock orbitals of the 
atoms computed in a large Gaussian basis with spin and 
symmetry constraints. The second is a split valence 
plus polarization basis which was formed from the 
natural orbitals of the atoms by including the first shell 
of correlating orbitals. For hydrogen, the supplemental 
orbitals were taken from an sp-limit calculation on H2

+ 

and reproduce exactly the hydrogen atom and H2
+ or

bitals of the uncontracted basis. 
As Table I shows, the Dunning basis sets give better 

absolute energies than the Pople basis sets of compa
rable size. The nonstandard bases, however are much 
better than any of the standard sets. The atomic orbital 
set is 1300 mH below the STO-3G energy. The atomic 
NO set is 10 mH below other split-valence sets. Even 
so, the extended set with CI is still 220 mH above the 
experimental energy (about 80 mH of this is core cor
relation and 30 mH is relativistic energy). 

It is customary to assume, based on extensive expe
rience, that energy differences will be better than ab
solute energies. The energy of atomization computed 
with STO-3G approaches most closely to the SCF limit, 
but a large piece of this energy is clearly due to basis 
set superposition error (BSSE). In spite of the small 
BSSE of the AO basis, it gives the worst energy of 

atomization. Only bases at the split-valence plus po
larization level are capable of describing the change in 
size and shape of the atomic orbitals in the molecule, 
so only this level of calculation can obtain reasonable 
atomization energies for the right reasons. When cor
relation energy is recovered via CI, the difference be
tween large and small basis sets generally increases. 

All of the Pople bases have larger BSSE than the 
Dunning bases. Generally the Dunning bases give more 
accurate energies of atomization at both the SCF and 
CI levels than the Pople bases with comparable num
bers of contracted functions. The vertical ionization 
and excitation energies with both classes of bases are 
comparable in accuracy. Notice that no 1A1 excited 
state was computed because the first excited state of 
this symmetry (the V state) is a 2b2 -»• 3b2 (3py) Ryd-
berg excitation which cannot be described by any of 
these basis sets. As is well known, any attempt to 
compute this state with a valence-only basis gives a Ib1 
-»• 2bx state above the 2b2 ionization limit. 

Tables II and III give some other properties com
puted from these basis sets. Because these properties 
tend to be first-order in the error in the wavefunction 
while the energy is second-order, they are a better in
dication of wave function quality. Again the STO-3G 
and AO bases are notable for their poor results. AU 
other bases give a reasonable dipole moment although 
the Dunning bases are somewhat better than the Pople 
bases. The quadrupole moment results are much more 
erratic, and none of the standard bases produce an 
accurate result although, again, the Dunning bases are 
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TABLE II. Selected Origin-Centered Properties0 for 
Formaldehyde (1A]) at the Experimental Geometry 

basis (HZ) (r2)e (P*)e 

Dunning/Hay 
SV 
Dunning/Hay 
SVP 
Dunning DZP 

STO-3G 

3-21G 

6-31G 

6-31G** 

MIDI-4 

HFAO 
minimal 
atomic NO 
SVP 
(s,p,d,f) 
extended 
exptl 

-1.224 
-1.206 
-1.124 
-0.963 
-1.124 
-0.960 
-0.600 
-0.458 
-1.038 
-0.798 
-1.184 
-0.968 
-1.085 
-0.919 
-1.167 
-0.957 
-0.785 
-0.642 
-1.106 
-0.939 
-1.124 
-0.987 
-0.917 ± 

0.008 
(C+O-) 

-0.015 
0.256 

-0.181 
-0.013 
-0.182 
-0.016 
0.287 
0.396 
0.042 
0.302 
0.057 
0.331 

-0.061 
0.109 
0.096 
0.351 

-0.107 
0.064 

-0.291 
-0.139 
-0.155 
-0.041 

1.35 ± 
1.0 

0.433 
0.268 
0.219 
0.138 
0.218 
0.137 
0.220 
0.165 
0.258 
0.108 
0.287 
0.141 
0.093 
0.027 
0.253 
0.109 
0.405 
0.318 
0.242 
0.176 
0.239 
0.177 

-0.45 ± 
0.5 

61.119 
61.551 
60.453 
60.708 
60.452 
60.701 
58.641 
58.857 
60.856 
61.197 
61.067 
61.449 
60.479 
60.674 
61.015 
61.412 
65.508 
65.791 
60.457 
61.598 
60.749 
60.813 

48825.8 
48825.6 
48775.2 
48802.8 
48775.2 
48825.5 
32477.4 
32488.9 
39452.8 
39469.6 
48164.3 
48164.0 
48030.2 
48058.5 
43868.3 
43871.4 
50373.3 
50385.3 
50363.2 
50375.6 
50422.5 
50474.6 

" Properties are in atomic units and are measured with respect to 
the center-of-mass. For each basis set entry SCF values are given 
in the first row, followed by CI values in the second row. The 
properties (in atomic units) are defined by (tiz) - {YA&d* 0» = 

0.5(£<j;(3*,-2 - r;2) where the sum runs over nuclei and electrons; 
(r2)* = <Lri2>» (P*)e - (IlPi*) where the sum runs over electrons 
only. 

better than the Pople ones. The dipole and quadrupole 
moments weight regions far from the molecule. Con
sequently diffuse supplemental basis functions are re
quired for reliability. Also, since the quadrupole mo
ment measures the Z = 2 component of the density, 
diffuse polarization functions of both d- and f-type are 
expected to be important. 

The field gradient q and its asymmetry are usually 
regarded as difficult to compute. Except for the min
imum basis sets, q was easily obtained for oxygen within 
10%. The hydrogen results were somewhat better. The 
carbon results, on the other hand, show no clear con
vergence. An operator such as q, which has I = 2 and 
weights the core region heavily, requires higher / 
functions in the core and valence regions. Thus, fol
lowing Sternheimer,117 one would expect that d func
tions would be needed in the Is core region and up to 
f functions would be needed in the valence region before 
the calculation could have predictive ability for q. 

Difficulties 

While the above comparison is instructive, not all 
molecules are as well behaved as the closed shell ground 
state of formaldehyde. The literature contains nu
merous references to classes of compounds and prop
erties which present much more severe tests of basis set 
quality. A small sampling will be presented next. 

The overwhelming majority of quantum chemical 
calculations are done in order to find molecular geom
etries and relative energies. Therefore, a feeling for the 
kind of reliability to be expected for these two prop
erties is of great importance. As discussed in the section 
describing individual basis sets, the structure of most 
molecules is predicted quite well with any of the 
standard split valence or split valence polarized basis 
sets. In a review article on the status of ab initio 
techniques for determining molecular geometries 
Schafer118 has reported that the results of hundreds of 
calculations indicate that absolute accuracy to ±0.01 
A in bond lengths and ±1° in bond angles can be 
achieved through the use of empirical correction factors. 
Although no comprehensive table exists which shows 
the accuracy in bond lengths and angles obtained with 
all commonly used basis sets for the same set of mole-

TABLE III. Selected Atom-Centered Properties1 for Formaldehyde (1A1) at the Experimental Geometry 

basis 

Dunning/Hay 
SV 
Dunning/Hay 
SVP 
Dunning DZP 

STO-3G 

3-21G 

6-31G 

6-31G** 

MIDI-4 

H F A O 
minimal 
atomic NO 
SVP 
(s,p,d,f) 
extended 
exptl 

We 
295.6 
295.9 
295.4 
295.5 
295.4 
295.6 
193.6 
193.7 
233.8 
233.8 
291.6 
291.5 
290.9 
290.9 
261.6 
261.5 
307.8 
307.9 
307.6 
307.6 
308.9 
309.1 

oxygen 

(Mr). 
25.470 
25.442 
25.478 
25.451 
25.475 
25.451 
25.143 
25.116 
25.321 
25.325 
25.451 
25.435 
25.446 
25.429 
25.401 
25.387 
25.401 
25.376 
25.488 
25.475 
25.478 
25.486 

9 
-2.608 
-2.319 
-2.343 
-2.123 
-2.342 
-2.122 
-2.443 
-2.358 
-2.223 
-2.030 
-2.428 
-2.187 
-2.219 
-2.026 
-2.481 
-2.240 
-3.441 
-3.243 
-2.521 
-2.363 
-2.272 
-2.133 
-2.194 

V 

0.475 
0.486 
0.515 
0.528 
0.515 
0.529 
0.252 
0.271 
0.641 
0.667 
0.546 
0.552 
0.562 
0.556 
0.553 
0.559 
0.557 
0.573 
0.439 
0.462 
0.642 
0.627 
0.695 

We 

119.8 
119.8 
119.6 
119.6 
119.7 
119.7 
77.4 
77.4 
94.0 
94.0 

118.4 
118.3 
118.2 
118.3 
105.9 
105.9 
124.7 
124.7 
125.0 
125.0 
122.7 
122.7 

carbon 

< ! / » • > . 

19.067 
19.093 
19.065 
19.099 
19.066 
19.101 
18.912 
18.933 
18.972 
19.011 
19.067 
19.097 
19.068 
19.109 
19.023 
19.056 
18.857 
18.875 
19.072 
19.105 
19.077 
19.121 

Q 

0.490 
0.356 
0.576 
0.459 
0.577 
0.460 
0.161 
0.203 
0.429 
0.315 
0.510 
0.388 
0.589 
0.478 
0.504 
0.381 
0.207 
0.261 
0.489 
0.385 
0.672 
0.578 

V 

0.383 
0.628 
0.080 
0.207 
0.077 
0.202 
0.364 
0.463 
0.225 
0.441 
0.226 
0.415 
0.014 
0.132 
0.236 
0.423 
0.831 
0.593 
0.159 
0.327 
0.075 
0.020 

<*>. 
0.415 
0.424 
0.413 
0.419 
0.413 
0.419 
0.365 
0.375 
0.367 
0.374 
0.423 
0.432 
0.424 
0.430 
0.375 
0.380 
0.249 
0.261 
0.401 
0.403 
0.452 
0.456 

hydrogen 

Mr)e 
6.259 
6.275 
6.279 
6.291 
6.279 
6.291 
6.333 
6.352 
6.262 
6.280 
6.263 
6.279 
6.283 
6.295 
6.253 
6.266 
6.035 
6.052 
6.272 
6.279 
6.280 
6.288 

Q 

0.287 
0.289 
0.256 
0.258 
0.256 
0.259 
0.277 
0.278 
0.279 
0.276 
0.280 
0.279 
0.247 
0.248 
0.286 
0.285 
0.381 
0.382 
0.269 
0.271 
0.245 
0.243 
0.261 

V 

0.007 
0.006 
0.013 
0.016 
0.013 
0.002 
0.000 
0.009 
0.009 
0.022 
0.000 
0.012 
0.012 
0.002 
0.004 
0.008 
0.004 
0.009 
0.010 
0.002 
0.007 
0.020 
0.018 

° Properties are in atomic units. For each basis set entry SCF values are given in the first row, followed by CI values in the second row. 
The properties (in atomic units) are defined as (Sx), = <E5(r«)>> <l/r*>e = (£Vrfc> where the sum runs over all electrons for a given 
nucleus x; qx = the field gradient at nucleus x, ex. for oxygen q0 = qyy = C£,qi(3x? - r?)/rf) where the sum runs over all electrons and nuclei 
except oxygen, TJX = the asymmetry parameter. 
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cules, some conclusions can be drawn from the frag
mentary information which is available. 

In an appendix for the Japanese Quantum Chemistry 
Literature Data Base Iwata119 states that the average 
deviation in bond lengths for minimal basis sets is +0.05 
A and ±10° in bond angles at the SCF level. If we stay 
at the SCF level but increase the basis set to the split 
valence or double zeta level the average deviations drops 
to -0.02 A and ±5°. Further improvements in the basis 
set (polarization functions, triple zeta valence space) do 
not produce concomitant improvements in bond lengths 
although deviations in bond angles do improve slightly 
to ±3°. The expected improvements finally show up 
only when electron correlation effects are considered. 
Deviations then drop to the ±0.003-0.005 A and ±1° 
level. Care must also be taken in defining the 
"experimental" geometries when differences on the 
order of 0.002 A are in question. 

Even here it must be remembered that part of the 
excellent agreement with experiment arises from a 
cancellation of errors due to basis set incompleteness 
and lack of full correlation recovery. For instance, if 
one goes from a 6-31G* basis to a 6-31IG** basis, both 
at the MP3 level, the agreement gets worse (bonds get 
shorter). Conversely, if one goes from MP3 to MP4 
with the same 6-31G* basis agreement also worsens 
(bonds get longer). Many occasional users of ab initio 
programs mistakenly equate longer run times with 
greater accuracy. 

Instances of poor agreement between SCF and ex
perimental geometries are much more prevalent in open 
shell systems. Based on a relatively small sampling of 
di- and triatomics (many of which were hydrides) 
Farnell, Pople, and Radom120 reported an accuracy for 
RHF, UHF, and UMP2 open-shell techniques compa
rable to the accuracy in closed-shell molecules with the 
same 6-31G* basis. However, they warned that in cases 
where the degree of spin contamination in the UHF 
wave function becomes large the RHF results are pre
ferred and the UHF wave function would probably 
provide a poor starting point for the UMP perturbation 
theory expansion. 

In spite of the optimistic flavor of the above article 
there are numerous studies of radicals and diradicals 
in the literature which report difficulties. For these 
species the potential energy surfaces are often quite flat. 
Subtle basis set and/or correlation effects can quali
tatively change the geometries obtained by ab initio 
methods. Some of the difficulties manifest themselves 
as artifactual symmetry breaking phenomena,121 i.e., 
certain methods result in unsymmetrical wave functions 
at symmetrical geometries. 

Other problems can arise from physically unreason
able solutions of the Hartree-Fock equations. For ex
ample, in SiO+ (2S+) an extended (s,p,d) basis set SCF 
wave function122 placed the unpaired electron primarily 
on oxygen in spite of strong experimental evidence to 
the contrary. The results from a large MCSCF wave 
function were better. While the dominant configuration 
possessed the same orbital occupancy as the HF con
figuration the singly occupied orbital was delocalized 
over both atoms. 

Even closed-shell ground states of molecules com
posed of first-row atoms can be difficult. F2 and 
F2O2

123,124 are excellent examples where polarized basis 

TABLE IV. Calculated Total Energies (hartrees) and 
Electron Affinities (eV) of the Oxygen Atom using Spin-
and Symmetry-Restricted SCF Wave Functions 

basis sets 
neutral 
E(3P) 

anion 
E(2P) EA 

Basis Sets without Extra Diffuse Functions 
STO-3G 
3-21G 
6-31G 
Dunning DZ 

-73.8041 
-74.3918 
-74.7769 
-74.7988 

-73.4269 
-74.2715 
-74.7144 
-74.7538 

Basis Sets with Extra Diffuse Functions 
3-21+G 
Dunning DZ+ 
extended 
numerical HF 
exptl 

-74.4093 
-74.7993 
-74.8091 
-74.8091 

-74.3964 
-74.7779 
-74.7894 
-74.7894 

-10.26 
-3.27 
-1.70 
-1.22 

-0.35 
-0.58 
-0.54 
-0.54 

1.46 

set SCF wave functions predicted bond lengths which 
differed from experiment by more than 0.1 A. Exten
sively correlated wave functions are necessary to obtain 
good results for these molecules. Another example is 
the transition metal dimer Cr2 whose experimental bond 
length is 1.68 A, to be compared with an (s,p,d,f,g) 
SCF125 result of 1.45 A. Enough other examples are 
known that care is always warranted in computing ge
ometries with small to medium sized basis sets at the 
Hartree-Fock level. 

For hydrogen-bonded systems the weakness of the 
bond causes problems in that the basis set superposition 
error can be a sizeable percentage of the interaction 
energy. As discussed previously for van der Waals 
complexes the BSSE produces a distortion in the op
timal geometry. The 3-21G SCF 0 - 0 distance in the 
water dimer is 2.80 A compared to the experimental 
value of 2.98 A. Even with a moderately large 
[5s,4p,ld/3s,lp] basis the SCF BSSE amounts to 20% 
of the binding energy at the equilibrium bond length 
and 60% at the SD-CI level.126 An improvement to the 
counterpoise correction scheme, intended specifically 
to improve the description of hydrogen bonded systems, 
has been suggested by Loushin et al.127 

Electron affinities (EA's) have a well-deserved repu
tation for being difficult to compute via ab initio tech
niques. This difficulty can be viewed as arising from 
two distinct problems. The first problem, which ap
pears even at the SCF level has to do with an increase 
in the diffuseness of the orbital receiving the extra 
electron. As can be seen in Table IV, standard basis 
sets, which lack sufficiently diffuse functions, do very 
poorly when compared to the numerical HF or con
verged basis set limit for the oxygen atom. 

Table IV also illustrates the second problem en
countered when trying to accurately compute the energy 
difference between a molecule (or atom) and its nega
tive ion. While the extra electron is experimentally 
found to be bound by 1.46 eV, at the Hartree-Fock level 
the anion is 0.54 eV above the neutral. Thus, the cor
relation correction for the oxygen atom EA amounts to 
+2 eV. The magnitude of the correction is not unique 
to electron affinities. Similar sized corrections have 
been shown for ionization potentials. The convergence 
of the correlation correction as a function of the number 
and types of polarization functions, shown in Table V, 
is discouragingly slow if one believes that in the com
plete basis set limit the ab initio result will agree with 
experiment. Full CI calculations on (0,0~)128 and 
(F1F")129 using moderate sized basis sets are being used 
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TABLE V. Electron Affinities (eV) for the Oxygen Atom 
as a Function of the Number and Type of Higher L Basis 
Functions at the CI Level0 

#d's 

0 
1 
2 
3 
4 
4 
4 
4 

#fs 

0 
0 
0 
0 
0 
1 
2 
2 

#g's 

0 
0 
0 
0 
0 
0 
0 
1 

EA 

1.01 
0.96 
1.11 
1.16 
1.19 
1.25 
1.30 
1.32 

"The CI calculations were of the multireference singles and 
doubles variety. The reference space consisted of single and dou
ble excitations in the (s,p) space. 

to unambiguously indicate the high percentage of the 
correlation energy which must be recovered to accu
rately treat electron affinities. 

We have already discussed the basis set requirements 
for certain properties. Another set of properties which 
has received attention lately and for which the basis set 
requirements have proven discouragingly large is the 
set of hyperpolarizabilities. If n is the electric dipole 
moment of a molecule, then in the presence of an ex
ternal electric field E y. can be expressed as 

H = H0 + aE + K$E2 + XyE3 + ..., 

where M0 is the permanent dipole moment, a is the 
first-order (dipole) polarizability, /3 is the second-order 
hyperpolarizability, etc. The symbols K, X ... are fixed 
numerical constants chosen by convention. In work on 
H2O

130 and HF131 the need for quite diffuse functions 
has been demonstrated. In the former case, center-
of-mass basis functions with exponents as small as 
0.0079 for s and 0.0057 for p were employed along with 
a large [7s,5p,6d/5s,3p] basis set at the MBPT level. 
For HF an even larger [5s,3p,4d,2f/5s,3p] basis, capable 
of yielding 92% of the valence correlation energy at the 
MBPT (4) level, was used. In spite of the number of 
basis functions the predicted values of the /3 hyperpo
larizability was only 50-70% of the experimental value 
in water. Only slightly better results were found for HF. 
This presents a conceptual, as well as computational, 
problem since in the limit of a complete set of diffuse 
basis functions the molecule will be predicted to au-
toionize and bound state methods are not appropriate. 

Conclusion 

The sustained high publication rate for papers in
troducing new Gaussian basis sets or analyzing the 
performance of existing sets attests to their central role 
in current quantum chemical methodologies. Indeed, 
whether one finds the topic of basis sets intrinsically 
interesting or not, no researcher involved in performing 
quantum chemical calculations or in understanding the 
significance of someone else's calculations can afford 
to be totally ignorant of the common basis sets and their 
limitations. Furthermore, as the impact of ab initio 
predictions continue to grow and influence more areas 
of chemistry the need to know will also grow. 

The choice of basis set is inextricably tied to the 
hardware and software capabilities which can be de
voted to a problem. At present quantum chemistry 

programs are running across a vast spectrum of com
puters ranging from the latest American and Japanese 
supercomputers all the way down to personal com
puters. Machines in a class with the 256 Mword, several 
hundred million floating point operations per second 
Cray-2, are just beginning to be explored. It is, however, 
evident that such computers will enable much larger 
basis sets to be used than have been previously possible. 
At the same time, advances in rotating disk technology 
and declines in cost have permitted individual chem
istry departments to possess gigabytes worth of storage 
capacity. So that even at the local level calculations are 
being done that would have been impossible only 10 
years ago. 

In the latter half of the 1980s calculations employing 
100 or so basis functions have become commonplace. 
"Large" calculations, in terms of numbers of basis 
functions, fall into the 200-300 function range. Since 
this range is independent of the number of atoms you 
can either do very extended basis set calculations on 
small systems or smaller basis set calculations on larger 
systems. For the most part the use of minimal basis 
sets has been relegated to those molecular systems with 
very many atoms (>50) or to extensive scans of poten
tial energy surfaces. The continuing development of 
relativistic effective core potentials is opening up rows 
of the periodic table that are nearly impossible to treat 
with nonrelativistic, all-electron methods. 

The mounting evidence seems to suggest that small 
split valence (e.g., 3-21G or Dunning/Hay SV) or split 
valence plus polarization (e.g. 6-31G*) basis sets per
form adequately in SCF or correlated geometry opti
mizations of closed shell organic compounds, but that 
very extended sets with flexible valence spaces and 
several sets of polarization functions are needed for 
energy differences accurate to 2-5 kcal/mol or 1-elec-
tron properties accurate to within 5%. Such calcula
tions represent a challenge even with state-of-the-art 
facilities. The desire to choose the most efficient basis 
set to obtain a desired answer will undoubtedly moti
vate continuing research in this area. 
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